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LElTER TO THE EDITOR 

Renormalisation group study of liquid crystalline order in two 
dim ens i o n s 

R Deuri and P Shukla 
Physics Department, North-Eastem Hill University, Shillong 793003, India 

Received 19 June 1985 

Abstract. We apply the Migdal-Kadanoff real space renormalisation group method to 
study the Lebwohl-Lasher lattice model of liquid crystal behaviour in two dimensions. 
The model supports a phase transition similar to the Kosterlitz-Thouless transition in the 
two-dimensional XY model of magnetism. However, the liquid crystalline order at low 
temperatures is unstable to any symmetry breaking crystalline field. This suggests that thin 
nematic films may be experimentally unrealisable. 

Two-dimensional liquid crystals are particularly promising for theoretical as well as 
experimental studies of phase transitions (see, for example, [l]). This is because the 
theory of phase transitions in two dimensions is simpler than its counterpart in three 
dimensions and has a rich structure [2]. On the experimental side, liquid crystal films 
almost as thin as a monolayer can be fabricated and studied in order to test this theory. 
In this connection it is noteworthy that the liquid crystal films fabricated so far.are 
smectic films and it appears impossible to produce thin nematic films stable against 
rupture. In this letter, we study the theory of two-dimensional nematic order and the 
effect of symmetry breaking crystalline fields on the ordered state. We find that the 
two-dimensional nematic order is strongly unstable to any symmetry breaking crystal- 
line field. We feel that this may be the explanation for the failure to produce thin 
nematic films in the laboratory. 

We take up the Lebwohl-Lasher lattice model of a nematic liquid crystal [3]. This 
is given by the Hamiltonian 

H = -J (COS’ e, - 1) 
i , j  

where the sum is over pairs of nearest-neighbour sites on a square lattice, J is a 
parameter characterising the strength of the interaction and Bi is the angle that the 
axis of symmetry of the molecule at the site i makes with some reference axis. We 
apply the Migdal-Kadanoff real space renormalisation group method to study the 
phase transition supported by the above Hamiltonian [4]. The first step of the renor- 
malisation transformation consists of a bond moving operation whereby the square 
lattice of a spacing a is converted into a more sparse square lattice of spacing 2a by 
moving alternate vertical columns of bonds to the right and alternate horizontal rows 
of bonds down as indicated in figure l(a). Figure l (b )  shows a unit cell of the new 
lattice obtained as a result of the above bond moving operation. The site at the centre 
of the square is completely isolated and contributes an unimportant constant of 
integration to the partition function of the system. The next step in the transformation 
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Figure 1. ( 4 )  Original lattice, ( b )  lattice after bond moving, (c) lattice after bond moving 
and decimation. 

is to integrate over the sites situated at mid-points of the sides of the square cell in 
figure l ( b ) .  This is a one-dimensional problem and can be done exactly. The resulting 
new unit cell is shown in figure l(c). The results of bond moving and decimation on 
the interaction is most conveniently expressed in terms of the Fourier-Bessel com- 
ponents of the reduced pair interaction V ( K ,  1 9 ~ ~ ) .  The initial pair interaction in the 
Lebwohl-Lasher model is V ( K ,  012) = K(cos2 Ol2  - l) ,  with K = J/ kBT However, suc- 
cessive steps of the renormalisation group transformation change the form of the 
interaction and therefore it is necessary to write the renormalisation group equations 
for an arbitrary pair interaction. Let us write 

+OD 

Under bond moving operation fm goes into f where 

+m 

Under decimation f, goes into fdm where 

fd=f:( m=-m y .)-I (4) 

For the initial Lebwohl-Lasher pair interaction the Fourier-Bessel coefficients are 

f i m  ( K )  = exp(-tK)lm(fK) 

f i m + l ( K )  = O  m = 0 ,  1,2,. . . ( 5 )  

where I,,, is the modified Bessel function of integer order m. 
The renormalisation group method consists in starting with the set of coefficients 

given by equation ( 5 )  and computing the new coefficients with the help of equations 
(3) and (4). This procedure is repeated with the newly obtained coefficients as the 
input coefficients for the next iteration. The even character of the coefficients, as 
embodied in equation ( 5 ) ,  is preserved by the renormalisation group transformation. 
The result of repeated application of the transformation on the Hamiltonian (1) falls 
into two categories, one corresponding to low temperature behaviour and the other 
corresponding to high temperature behaviour. At high temperatures the initial set of 
coefficients rapidly converge to a high temperature fixed point. At low temperatures 
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the initial coefficients quickly approach the form 

f2,(  T) = ( T/T)’”  exp(-4m2T) 

f Z m + l (  T) = 0 m = 0 , 1 , 2  ,... . (6) 

Here, and in the following discussion, we have set the Boltzmann constant kB equal 
to unity for convenience. The above form of the coefficients remains almost unaltered 
under further iterations. It may be noted that equation (6) is the leading term in the 
asymptotic expansion of equation ( 5 )  for large K which corresponds to low T. The 
difference between the input coefficientf,, given by equation (6) and the corresponding 
renormalised coefficient as obtained by the application of equations (3) and (4) is 
exponentially small of the order of exp(-.rr2/4T) as T goes to zero. Thus over an 
entire range of low temperatures, a few iterations of the renormalisation group transfor- 
mation reduce the initial interaction ( 5 )  to the form ( 6 )  which remains almost fixed 
under further renormalisations. 

In order to determine the dividing line between the low T and high T behaviour, 
it is instructive to characterise the system by a single parameter which measures the 
effective temperature of the system. We define 

For the initial coefficients the effective temperature defined by equation (7) is in fact 
equal to the real temperature of the system. This can be easily verified by using the 
recursion relations satisfied by the modified Bessel functions. As the form of the 
interaction is altered by the renormalisation group transformation, T’ begins to deviate 
from T but it still serves as a useful parameter to characterise the effective temperature 
of the system. After the first step of the renormalisation group transformation the 
effective temperature of the system becomes 

Thus the change in the effective temperature under a scale change of 2 is given by 

A = (TI- T)/ln 2. (9) 

In figure 2 we have plotted A against T. The graph shows a fixed point at T* = 0.647 
separating the low T behaviour from the high T behaviour. If the temperature of the 
system is greater than T*, the renormalisation group transformation increases the 
effective temperature of the system so that successive iterations of the transformation 
would take the system to the infinite temperature fixed point. On the other hand, if 
the initial temperature of the system is less than T*, the renormalisation group 
transformation decreases the effective temperature of the system and the system flows 
to the zero temperature fixed point under successive applications of the renormalisation 
group transformation. We identify T* with the Kosterlitz-Thouless transition tem- 
perature in the two-dimensional liquid crystal. The critical properties of the system 
below the Kosterlitz-Thouless transition temperature are controlled by the zero tem- 
perature fixed point. We may define a critical exponent A, characterising the instability 
of the fixed point with respect to the changes in the effective temperature of the system 
as follows: 

dT’/dT = 2”l. (10) 
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Figure 2. Plot of A (the change in the effective temperature of the system under a 
renormalisation group scale change by a factor 2) against the effective temperature. 

The zero temperature fixed point is approached infinitely slowly corresponding to 
A, = 0 and the correlation length exponent v = W. 

In order to examine the stability of the fixed points under crystalline symmetry 
breaking fields, we add to the Hamiltonian ( 1 )  a perturbation of the term of the form 
h, cos p8, p = 0,2,4,5.  In the linear order in h, the renormalised Hamiltonian acquires 
a term of the form h6, cos p 0  where 

An exponent A, corresponding to the perturbation h, may be defined by the equation 

dhL/dh, = 2Ap p = 2,4,6. (12) 

The exponents A,, A*, A4 and A6 for the fixed points T* = 0 and T* = 0.647 are listed 
in table 1. A positive value of the exponent means that the critical behaviour associated 
with the fixed point is unstable with respect to the corresponding perturbation. 

Table 1. Fixed points and eigenvalues characterising their instability. 

T* 0 0.647 aTr 

A, 0 0.43 0 
A 2  2.0 1.86 1.87 
A4 2.0 1.55 1.50 

2.0 1.27 0.87 
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The reader may wish to compare the foregoing analysis of the liquid crystal system 
with that of Jose et a1 [ 5 ]  for the two-dimensional X Y  magnet. The two calculations 
are very similar owing to the fact that the input Fourier-Bessel coefficients are very 
similar for the two problems?. The behaviour of the isotropic liquid crystal is similar 
to the behaviour of the isotropic X Y  magnet at twice the temperature of the liquid 
crystal. The liquid crystalline order is unstable to symmetry breaking perturbations 
cos pB with p = 2,4,6.  In the Migdal-Kadanoff approximation the X Y  magnetic order 
is also unstable to perturbations with p = 1,2 ,3 ,4 ,6 .  However, Jose et a1 have suggested 
that the Migdal-Kadanoff approximation does not treat vortex excitations adequately 
and the result of this approximation for A, in the X Y  model is suspect for p = 4 and 
6. These authors have suggested that the Migdal-Kadanoff approximation may be 
relied upon insofar as to note that the critical behaviour of the X Y  model is in the 
same universality class as the Villain model [7] but the Villain model can be analysed 
without recourse to the Migdal-Kadanoff approximation. When this is done a sharp 
vortex unbinding transition is found at T, = $T (where, as in the calculation of Jose 
et a1 based solely on the Migdal-Kadanoff approximation, there is no sharp transition 
temperature corresponding to the Thouless-Kosterlitz transition). The perturbations 
with p = 1 ,2 ,3 ,4  remain relevant below T, ( p  = 4 becomes marginal at the transition 
temperature) but the p = 6 perturbation becomes irrelevant over a finite range of 
temperature ‘below the Kosterlitz-Thouless transition temperature. 

The remarks of Jose ef a1 on the inadequacy of the Migdal-Kadanoff approximation 
to treat vortices in the X Y  model also apply in the case of the Lebwohl-Lasher model. 
However, in our case, the effective temperature parameter T‘ serves better to charac- 
terise the system. There is some arbitrariness in choosing a single parameter to 
characterise the effective temperature of the system. For example, we could choose 

+a0 -1  

T=$ m = - m  f m ( l / T ) (  m = - c c  m ’ f m ( l / T ) )  , 

If the interaction is initially the Lebwohl-Lasher interaction, i.e. the fm are given by 
equation ( 5 ) ,  we have T”= T, just as T’= T. The parameter T” is a straightforward 
generalisation to the liquid crystal case of the effective temperature used by Jose et a1 
for the X Y  model. The parameter T” fails to yield a fixed point characterising the 
Kosterlitz-Thouless transition, although, as in the case of the X Y  model it does give 
an indication that the critical behaviour of the Lebwohl-Lasher model may be in the 
same universality class as the Villain-like model in which the Fourier-Bessel coefficients 
of the pair interaction are given by equation ( 6 ) .  This feature of the Lebwohl-Lasher 
model is, of course, also brought out by the T‘ description of the system. The T’ 
description has the advantage that it gives a sharp transition temperature and does 
not suffer from the problems of numerical analysis that T” has at low temperatures. 
In order to calculate T’ we need only three coefficients but in order to calculate T 
we need an infinite series of coefficients which converges very slowly at low tem- 
peratures. 

We have also calculated analytically the properties of the Lebwohl-Lasher model 
when the couplings are given by the low temperature limit, i.e. equation ( 6 ) .  We find 

t The Migdal-Kadanoff( MK) approximation also gives qualitatively similar results for the Heisenberg magnet 
and the Lebwohl-Lasher model of a liquid crystal in three dimensions. This makes the straightforward 
application of the M K  approximation to the three-dimensional liquid crystal model suspect. (See [6] for a 
discussion of this problem.) However, in the present two-dimensional case, the results of the approximation 
are qualitatively correct in view of the Monte Carlo simulations of the Lebwohl-Lasher model. 
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that a vortex unbinding transition takes place at T, = j.n which is close to the transition 
temperature T* = 0.647 found by the Migdal-Kadanoff transformation. Below T,, we 
find that all crystalline symmetry breaking fields are relevant with eigenvalues given by 

A , = 2  - ( p 2 / 8 r )  T. 

The values of A p  at T, = &r are listed in table 1 for comparison with the corresponding 
values obtained by the Migdal-Kadanoff approximation. It is seen that in the Migdal- 
Kadanoff approximation as well as in the other low temperature analysis of the 
Lebwohl-Lasher model the nematic ordered state is unstable to every crystalline 
symmetry breaking field. We feel that this may be a possible explanation for the failure 
(so far) to fabricate thin nematic films in the laboratory which are stable against rupture. 
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